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Growth patterns in a channel for singular surface energy: Phase-field model
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We study solidification in a two-dimensional channel for faceted materials whose facets correspond to cusps
in the y plot. The main result is the existence of three growth modes, according to the anisotropy strength: a
single faceted finger at high anisotropies, two faceted fingers in the intermediate range, and an oscillating mode
at low anisotropies. Simple geometrical and dynamical models are proposed to explain the nature of the
observed modes. In particular, the one-finger patterns are shown to be similar to free dendrites while the
two-finger patterns correspond to confined solidification fingers.
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I. INTRODUCTION The growth of dendrites with faceted tips due to cusps

Owing to its close relationship with two canonical growth |nr: ;EZIV ﬂ(ﬁ we;shreec?;}gwsi;ugme%% byotfhe;r?igo?rr:)?;e-flv\ilic;
models, viscous fingerinfl] and dendritic solidificatior2], considered'.

crystal growth in a channel has attracted a rather large inter-

est in the past two decgdes. The one-sided version of this Y(6) = yo[ 1 + &(|sin(6 - 6;)| + |cod 6 - 6;)])]. 2)
problem was largely studied by the Green’s function method )

[3-5 and the two-sided version by analytical methg8g], A carefully controlled sm_oothmg of the cusps over a range
numerical resolution of the physical equatiopd], and *f around the facet orientationg+nm/2 (n=0,1,2,3
phase-field calculationgd]. The geometrical and physical _proved necessary to obtain accurate_numerlcal results, which
parameters vary considerably from one paper to the other biff turn could be extrapolated to the limti— 0.

a fourfold smooth anisotropy is assumed in each case for the The present paper deals with the growth of faceted fingers
surface energy, for materials belonging to this family. After a short presen-

tation of the model in Sec. II, we first test it in Sec. Il for
Y(0) = yo[1 + ecod46)], (1)  isotropic surface energy against available results obtained by
) . the Green’s function methofd]. We then turn in Sec. IV to
the horizontal axis, perpendicular to the channel ayis modes are obtained. Two modes are similar to the ones ob-
Analytical results obtained at low Péclet numbers showseryed for smooth anisotropy and an oscillating mode is ob-
that two branches of solutions exist for this problh The  tained for low anisotropies. A dynamical description of the
low-velocity branch corresponds to the Saffman-Taylor soluqatter case is proposed in Sec. V, while the former case is
tions [1], while the high-velocity branch has a different be- gnalyzed in Sec. VI, within a geometrical model. In Sec. VII,

havior of velocity versus undercooling and describes the soa few points are discussed and additional perspectives
lidification fingers. According to the relative strength of two gpened.

physical parameters, the anisotropynd channel widtiw,
two regimes are distinguished for the solidification fingers.
The geometrical parametarwhich gives the zeroth order Il. PHASE-FIELD MODEL
approximation of the interface equation far from the #p, . . . o
=(1/s)In cog mx/A), allows one to discriminate between the In the |sothermal variational formul_atlon of the thin inter-
two regimes. In the weak anisotropy regime/A<s fe_lce ph_ase-ﬂeld mod¢lL1], the evolutlon_ equations for the
<m/(1-A), confining effects dominate and the selectegdimensionless temperatuveand phasep fields are
shape is a confined finger. In the other limit 77/ A, surface 1
energy dominates, and it crosses over smoothly to the the du=DV2u+ E&ﬁp 3
W—¢e limit corresponding to a free dendrite.

The purpose of this work is to study the effects of facetingand
on the growth modes in a channel. Indeed, there exist mate- . .
rials for which they plot is not smooth and presents cusps in 0 de=[e - Nu(1 - ¢?)](1 - ¢?) + V[W(0)?V ¢]

certain angular directions corresponding to specific crystal- _ , + y
lographic directions. At equilibrium, facets perpendicular to LWOW (O)3y] + AIWOW (6)dxe]. (4)
these directions usually appear. In these equationd) is the dimensionless thermal diffusion
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coefficient and\ the coupling between temperature and !
phase fields. The phase field varies continuously across the HP2L
interface and far from itp=1(-1) in the solid(liquid). The
temperature fieldi=(T-Ty)/(Ly/Cp), with T the tempera-
ture, Ty, the melting temperature,,; the latent heat, an@,
the specific heat at constant pressure.
The kinetic coefficient and capillary length are related to
the model variables through

a0, vv<0>2]
xvv(a)[l 256

B(6) =

X X

(5 HL
o :

0.5 0.5
and
FIG. 1. Shape of the germ used as initial condition in the phase-

do(6) = %[W(G) FW(0)], 6) field simulations.
In the following, the tildes will be dropped in order to sim-
wherea; =0.8839 anda,=0.6267[11] and 7(#) and W(6) plify the notation. Unless otherwise stated, the same reduced
represent a relaxation time and the interface width. capillary lengthdy/(2L)=0.005 as in Ref[5] will be used.

In this formulation, there is a direct connection between

the interfacial energy and the interface width, so that the lll. RESULTS FOR ISOTROPIC SURFACE ENERGY

most natural choice is We first test our code by considering the case of isotropic
surface energy, i.eq=0. The initial condition is a solid fin-
f(6) = W(6)/Wo = ()] yo. (1) ger (¢=1) with the shape of a rectangbe,<x=x, and
Here as in[10] the kinetic coefficient is set to zero by ~—H/2L=<y=0, topped by a half circle and with the width
imposing expected in the stationary statg,~x,=A (see Fig. 1. A
) horizontal shift is imposedx, # —xy,) in order to promote the
7(0) = 7f(0)%, (8)  development of asymmetric fingers whenever they are stable.
so that The temperature field is initially set to zero inside the solid
germ and to A outside. Reflecting conditions are imposed at
_1DH6# 1D all the domain boundaries. In order to keep the tip at a
- a_ZW(a)z - a_ZWO- 9 roughly constant altitude during the whole simulation length,

the phase and temperature fields are shifted downward at
In a small interval #, around the facet orientations, the regular time intervals. The area freed at the top of the domain
anisotropy function is smoothed; for instance one uses is then filled with pure liquid ¢=-1) at temperaturei=—A.
_ ; _ _ After a transient which shortens as undercooling is in-
f()=1+dlsin 6+ &(1 - cotdp)cos 6 - 0y) (10 creased, the finger reaches a stationary state in which its tip
in the range 6= 6-6;< 6, [10]. The discretization of the moves at a constant velociw.
model is based on a simple Euler scheme on a regular square Tip velocity is plotted as a function of undercooling in
mesh and is described at length in REf0]. We impose a Fig. 2. Our data agree qualitatively well with the correspond-
mesh sizeh/W,=0.4 and a diffusion coefficienDrO/\NS ing results obtained by Kupfermaet al. [5]. The obvious
=1.0 throughout the paper. The domain considered is thgquantitative differences are not unexpected since these au-
channel +=x=<L and H=<y=<H, with L/W;=37.6 and thors studied the one-sided version of the problem, whereas
H/W,=100.0, 200.0, or 400.0. We only consider the facetour model describes the two-sided case.
orientationé;= /4 here. Other orientations are possible but At low undercoolingsA <0.73, symmetric fingers are ob-
symmetry about the growth direction, i.e., thaxis, is bro-  tained, while parity broken fingers are selectedfo¢ 0.73.
ken then. This introduces an additional degree of freedom ifror A=0.73, an asymmetric finger arises from the off-
the problem and, in the case of smooth anisotropy, it wasentered initial condition. However, using the stationary
shown that the resulting competition between growth andgymmetric finger obtained foA=0.72 as initial condition,
channel orientations gives rise to additional dynamicalwe also obtain a stable symmetric finger #h=0.73. As
modes as periodically oscillating structuf@g]. The specific  expected, the asymmetric finger grows faster. The bifurcation
choice 6,=K &/ (1+6) for the smoothing angle permits us to point lies nearAg=0.725 which is significantly higher than
use a time step that is independent®fin the simulations the valueAg=0.665 obtained irf5].
we imposeK=1/25, so thatt/ 7,=0.032; this rather large Below some critical valué\* (0) =0.68, the initial finger
time step brings the computation times down to practicals systematically unstable and the interface evolves slowly to
values. a planar front.
Throughout the present paper we will systematically use
nondimensional variables, lengthig=x/(2L) and times IV. RESULTS FOR ANISOTROPIC SURFACE ENERGY
T=t/(4L%/D), so that nondimensional velocitiey/=V We now turn to the main purpose of this paper, which is
X (2L/D) are in fact, up to a constant factor, Péclet numbersthe growth of materials with cusps in theplot. We set the

011603-2



GROWTH PATTERNS IN A CHANNEL FOR SINGULAR. PHYSICAL REVIEW E 71, 011603(2005

Wr———T T T T 7
5 O—Oasymmel.ric 1
= symmetric
20l _
> 151 -

10l _ >

L “(,' i

006 07 045 o8 085 09 A

A

FIG. 2. Tip velocity as a function of undercooling for isotropic L

surface energyopen symbols Note the coexistence of the sym- -0.5 0 0.5
metric and asymmetric modes far=0.73. The corresponding data

of Kupfermanet al. are also shown for comparisdfilled symbol3. X

) ] . FIG. 4. One faceted finger obtained for undercooling0.78
undercooling to a fixed valuey=0.78, high enough for the and anisotropys=1.0. Thex andy coordinates are normalized by

simulation times to be reachable. the total channel width.
The only free parameter is thus the anisotropy stre@gth
and Fig. 3 represents the tip velocity as a function of this A. High anisotropy: One faceted finger

parameter. We use both centered and off-centered initial con-

ditions here; as a consequence, two dynamical modes may For 6=0.6, a single faceted finger is obtained indepen-
coexist for some values of the anistropy strengtiniso-  dently of the initial condition, as shown in Fig. 4.

tropy favors growth since the tip velocity(d) for 6>0 is An important prerequisite is to check numerical conver-
systematically higher thaw(0). gence of the finger shape as the rounding armigleends to
zero. In Fig. 5 the facet length and the tip radiuRR are
plotted as functions of,. A satisfactory linear convergence
is observed, as in the case of dendritic groil®]. Note

16 T that, because of the rather long times needed to perform the
i numerical simulations, we do not extrapolate our data to the
limit 6,— 0 in the following. Based on the results obtained
14 here, one can expect systematic deviations of less than 20%
on A andR.
0.2 A B a—
12 |+ ;
_ centered | Ols/ |
0 .
10
off-centered ;t
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FIG. 3. Morphology diagram for anisotropic surface energy. Tip 90

velocity is plotted as a function of anisotropy for centered and off-
centered initial conditions. The black circle corresponds to the FIG. 5. Convergence of the tip radiisand facet length\ with
asymmetric finger obtained at zero anisotropy. the rounding anglé, (anisotropys=1.0).
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FIG. 6. Tip velocity as a function of undercooling for the one-  FIG. 8. Ratio of the facet length to the tip radius as a function of
finger mode and constant anisotropy; 1.0. The continuous line is  anisotropy for the one- and two-finger modes. The straight dotted
a least-squares fit to a square-root law. line is a guide to the eye.

0.30=< 6=<0.35 for off-centered initial conditionFig. 7).
This mode is the fastest one in the present stiség Fig. 3.
N Fig. 8, A/R is plotted as a function of the anisotopy

Contrary to the isotropic cagé=0), the finger is always
symmetric in this range of anisotropy. This is not so surpris-

ing because higher surface energy anisotropy imposes higher
symmetry about thg axis. This result is not due to a par- stengthé for the one-finger and the two-finger modes. Linear

ticular choice of undercooling, since keeping the an|sotrop)}ncre""s"?l is observgd in both c;ases and rt1he X.’;ms;ltlon be-
fixed at §=1.0 and varying\, we systematically obtain one Tweeﬂ the tvxt/10 modes ?Cﬁ‘_"s Gﬁ:.O.'A'O’. w ere_d 351 h
symmetric faceted finger fak=0.68. On the other hand, we "SIht Into the origin of this transition Is provided by the

cannot totally exclude the existence of a stability domain foranfalytical study Qf the smooth. ani_sotropy C#6p For strong
asymmetric faceted fingers in t1é,A) plane. anisotropy, the finger dynamics is governed by surface en-

Tip velocity is plotted as a function of undercooling in ergy and is thus S|m|Iar. to that of a_frge dendrite. On th?
Fig. 6 for an anisotropyy=1. The data follow reasonably other hand, fpr weak anlsot_ropy, conflnlng_effe_cts are domi-
well the lawA=A*+a\2 (a>0) valid for supercritical bi- nant and a different shape is selected. This picture is tested

furcations. To check the possibility of a subcritical bifurca- quantitatively for faceted solidification in the framework of a

tion, we also try a fit of the formA=A* + aV2+bV*, which, geometrical model in Sec. V.

. : : . At this point, it is rather instructive to compare the two-
however, yields a negative value, essentially excluding a . . . e . ;
subcritical bifurcation. A least-squares fit to the first law thenfmger mode(Fig. 7) with the dendritic pattern obtained in the

givesA* (1)=0.66 for the critical undercooling, to be com- open space for t_he same parame(éig. 9). Th_e latter alsq
pared t0A’(0)~0.68 obtained for zero anisotropy. A de- displays two main parallel branches but their overall width

.. ) : . exceeds the channel width by far. In addition it is clearl
crease of the critical undercooling* (6) on anisotropy in- Y y

. ) visible on the figure that the widths of these branches are
crease is also found for the usual césshisotropy terniSl.  constantly increasing, which should cause new tip splittings

at later times(we indeed observe late tip splittings when
starting from a different gerinThis dendritic pattern is thus
I%ssentially nonstationary, contrary to the stationary two-
finger pattern obtained in the channel. The velocity of the
highest dendrite tip is represented as a function of time in
Fig. 10. It is evident from this plot that it would take an
extremely long time for the system to reach a stationary
state, if ever. We also see from this figure that the dynamics
is quite sensitive to the initial condition. In any case, the
velocity seems to adopt as an upper bound the stationary
velocity of the two-finger mode. This observation clearly
suggests that confining due to the channel walls allows the
system to select a fast stationary state that is probably not
reachable in an open geometry.

The stability of such patterns may be questioned because
periodic arrays of fingers are not observed during solidifica-
tion in an open space. This question is especially relevant

FIG. 7. A pair of faceted fingers obtained for undercoolihg When another dynamical state is obtained for a different ini-
=0.78 and anisotropy=0.30. tial condition, like the one-finger mode &=0.40 or the

B. Intermediate anisotropy: Pair of faceted fingers

A pair of faceted fingers is spontaneously selected whe
0.20<6=<0.40 for centered initial condition and when
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FIG. 10. Time evolution of the velocity for the highest tip of the
dendritic pattern shown in Fig. @hick line). The thin line corre-
sponds to a different initial conditio(solid germ. The horizontal
dashed line gives the velocity selected by the two-finger mode in
the channel geometry.

ranging the structures. This would explain why they are not
observed in open space.

C. Low anisotropy: Oscillatory mode

For 6<0.25, oscillatory states with a very stable period
are observed at long times, the same state being reached
from both centered and off-centered initial conditions
(Fig. 11).

To understand this mode, let us remark that growth al-
ways starts with tip splitting of the initial germ. Competition
between the two resulting fingers increases as anisotropy is

0 L I v 1, 1, decreased because facets become shorter, so that geometrical
0 1 2 3 4 qonstraints_ are weaker. In this c_ompef[ition, one finger is ul-
timately eliminated and the survivor tries to adopt an asym-

FIG. 9. A dendritic pattern obtained with the same parameters ag1etric shape as for zero anisotropy. On the other hand, sur-
the two fingers shown in Fig. 7. face stiffness tends to maintain symmetry about ytrexis.
Competition between both effects results in a new tip split-

oscillatory mode described in the next sectio®an.20 and  ting and leads to the observed oscillations. In the case of
5=0.25. In order to check the stability of the two-finger pat- centered initial cond|t|0r_1, the initial tip sphttmg preserves
terns, we introduce a small perturbati@nsquare dipat the ~Symmetry about they axis so that the double-finger mode
tip of one of the two fingers and resume time evolution. Onfémains stable for high enough anisotrop(és 0.20 andé

the large anisotropy sides=0.40, we indeed observe that =0-29. S . _
the perturbed finger is eliminated at long times and we re- The tip of the main finger is defined as the highest point
cover the one-finger mode obtained for off-centered initial®f the interfaceM(x,y), and its vertical velocity is denoted
conditions. On the small anisotropy sid@=0.20 the per- V,. Following the tip trajectory toggtherwnh the evolution of
turbation again provokes finger elimination and leads to thdh® whole pattern gives valuable informations about the os-
final oscillatory mode obtained with an off-centered initial Cillating mode(see Fig. 11 For off-centered initial condi-
condition. Both cases confirm that the two-finger mode mayonS, M remains on the right of the channel and slightly
be dynamically unstable. However, the two-finger pattern ob©Scillates around an average abscisealet us choose the
tained for 5=0.25 does remain stable against tip perturbatime origin as the moment wheM passes through its aver-
tion. Since this mode is also obtained both from centered an@gex positionx(0)=(x) while moving to the right. At=0, a
off-centered initial conditions fo=0.30 and§=0.35, we shoulder appears on the main finger, on the left side of the
conclude that there should exist a narrow stability domain fotip. This shoulder is the precursor of a secondary finger
the two-finger mode. The stability domain probably gets narS(X",y’), which is created after about an eighth of a period,
rower for higher order periodic patterrgghree, four, etc., t=T/8, at absciss&'(T/8)=0. Note that right from the start
fingery because more total space is available then for rearthe secondary finger is lower than the main ori€T/8)

mmb)\\\ﬁ\\

N
A
A
A
A
A
/ \
/A\
A
-
A
A
é
ﬁ

22

»
22

\

011603-5



GUERIN, DEBIERRE, AND KASSNER PHYSICAL REVIEW F1, 011603(2005

| 8
- 2

> 10H ® centered

O off-centered

’l

9 & ® -
I & % ? ]
2 2 . | .

1

FIG. 12. (Vy,Vy) plots obtained with two different initial condi-
tions for the oscillating mode displayed in Fig. 11.
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valueV. SinceV, increasegdecreasggor about 40%460%)

of the periodT, these oscillations are far from being sinu-
soidal. The same is true for the horizontal component of the
tip velocity V, which oscillates around zero.

The (Vy,V,) plot displays the limit cycle corresponding to
the oscillating modeFig. 12. Depending on the transient,
either the rightmost or the leftmost finger may be repeatedly
eliminated. For this reason two symmetric cycles are ob-
tained for centered and off-centered initial conditions. We
obtain qualitatively similar(V,,V,) cycles for all the low
anisotropies considered here but details in the dynamics can
be somewhat different. For instance, #+0.20 and 0.25 the
secondary finger stops its growth on the right wall and the
left wall alternately.

V. DYNAMICAL MODEL FOR THE OSCILLATING
FINGERS

An attempt to model the cyclic motion engendered by
repeated tip splitting and elimination of one finger faces the
primary difficulty that if we choose geometric variables de-
scribing the positions of features of the fingers, the loss of a
finger also means the loss of periodicity, since the newly
<y(T/8), and thaty—y’ increases steadily in time. Initially created finger is not identical with the old one. For example,
the two fingers repel each oth&, moving to the right an  we would like to choose the difference of the coordinates of
to the left. Tip splitting provokes a vertical acceleration of two finger tips as dynamical variables, because an interaction
M, so thatV, starts to increase at time=T/8. At time t between the two fingers will predominantly depend on their
=T/4, the main finger rebounds on the right channel walldistances in the two coordinate directions. But these dis-
and M starts to move leftward. Meanwhile, the tip velocity tances become undefined as soon as one of the fingers dis-
continues to increase to reach a maximum at titne appears and a new set of distances arises as a finger is cre-
=4T/10, whenM passes again through its average positionated. To circumvent this difficulty, we concentrate on
x=(x). The leftward movement of the main finger stops whenvariables describing a single finger and use plausible as-
it bounces on the secondary finger at titse8T/10 andM sumptions together with symmetry considerations to con-
backtracks again. During the remaining time intervalstruct a phenomenological model that should capture the es-
8T/10<t=<T, the main tipM moves again to the right while sential aspects of the interaction between fingers.

V, continues to decrease. Finally,tatT the secondary finger Our first assumption is that inertial effects do not play any
S stops growing vertically(elimination) and then rapidly role in the slow finger dynamics. This means that we will not
spreads sideways to reach the left channel wall. The systemirite equations for accelerations of the finger but rather con-
is now ready for the next cycle. From this analysis, one seesider the overdamped limit in which only velocity terms and
that the vertical velocityV, oscillates around an average coordinates appear. An obvious advantage is that we will

FIG. 11. Oscillating mode obtained at undercoolihg0.78 for
anisotropy=0.10. The trajectory of the main finger tM is su-
perimposed on the interface contours.
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have just two first-order equations of motion for the tip po- L L L
sition (i.e., thex andy coordinates of a fingeinstead of two 2
second-order ones.

Next we note that there are four distinguished directions 1
in the system. Two are thgandx directions, determined by
the walls of the channel and the direction orthogonal to them.
The other two are the directions of the facets which are ori-
ented at an angle of 45 degrees with respect toxtaady
directions. These orientations can be described by equations
of the form x+y=const andx-y=const. So our model
should be written in terms of the variablgsy, x-y, andx
+y (which are not independent of each other, of course

Third, we require all nonlinear terms in the model equa-
tions to respect the basic symmetry under reflection:

—X) with respect to the axis of a finggin the case of a x
two-finger solutionx=0 corresponds to a coordinate that is
off center by a quarter of the channel wiglttWe do not
require the same thing for the linear terms. These terms wil
drive the bifurcation from a fixed tip positio@in the frame
moving with the average tip velocityto an oscillating tip.
One might, for example, assume that the linear terms contain,

the control parameter as a common prefactor. This bifurcaCl€NtsPy andb,. For each solution of this phenomenological

tion parameter crosses the value zero at the bifurcation poinf’0de! there is a symmetric partner obtained after replacing
where the linear terms are therefore absent and the requiréﬁ—’_bl andb,— =Dy, corresponding to the other finger be-
symmetries of the system are respected. Beyond the bifurc4?9 the survivor of the competition.

tion, the symmetry would be broken by the fact that either, The I|n.ear|zed problem arising from Eql1) and (12)

the left or the right finger is the one that survives, and thig@S the eigenvalues
symmetry breaking is reflected by a symmetry breaking in 1 1

the linear terms of the model. On the other hand, if the bi- Np==(a;+ay \/—(al— a,)? - byb,.

furcation is of true Hopf type, i.e., if the oscillations start 2 4

with a finite frequency, then not all linear terms in the modelNegative values of; anda, (or a negative supnproduce a

equations(11) and(12) given below would have vanishing fixed pointx=y=0, and we expect the model to describe
coefficients at the bifurcation point. But this would not be aosci”ating t|ps for a range of positive values of all param-

problem either, because thetal system need not be sym- gters.

metric with respect ta=0 but only with respect to the chan- A physical interpretation of the terms in this model is as
nel center. Only the fingers themselves and the diffusion fieldo|lows. The parametera; anda, trigger the oscillatory in-

in the vicinity of their tips will satisfy the discussed symme- stapility, so they must increase with decreasing anisotropy.
try (approximately. In the case of a Hopf bifurcation, one \Whetherb, or b, is roughly constant at the bifurcation or
finger would correspond to one set of parameters of the lincrosses zero depends on whether the bifurcation is a Hopf
ear terms, the other to the symmetric set, as will be discussasifurcation or not, i.e., on whether the oscillations start at a

V. -<V._>
(=
T

-1

g
N

FIG. 13. Comparison of the numerically determined tip velocity
ith that obtained from the model equatio(kl) and (12), with
arameter values;=0.6, a,=0.45, b,;=0.245,b,=0.8, c=6.35,d

=3.84, ande=0.04. The parameters were fitted by eye.

shortly. _ _ N _ finite frequency or at zero frequency. Our data support the
If we restrict ourselves to nonlinearities up to third order, first possibility. The terms containing-y andx+y describe
we may then write a simplified model as follows: the influence of the facets. They contain length scalaad

x—y\2 [x+y)2 d which must be f_ormed f_rom_the length scales _of the physi-
X=a;x+byy— x[(—) + (—) } +exy (11 cal problem, that is, the diffusion length, the capillary length,

c c and the length of the facets. Since these terms should vanish
in the absence of facets,andd must increase with decreas-
ing facet length. An inverse proportionality would therefore

x-y\2 [x+y)\? be a possible relationship.and d need not be equal, since
o e (12)  thex andy directions are not equivalent. The term propor-
tional toxy is present, because growth in tk@ndy direc-
Further terms allowed by symmetry would be additionaltions is coupled even in the absence of facets, and this is the
terms proportional toc® and xy? in the first equation and simplest term describing such a coupling. Note, however,
terms proportional tg/> andy? in the second. However, we that in the absence of anisotropy and, hence, facets, the
will not invoke these terms here in order not to proliferatemodel as it stands cannot describe instability of a steady
parameters unnecessarily. That the prefactors oktheand  finger. We would then have to take into account at least the
x+y terms are the same in each equation is a consequence afbic terms that were neglected abgvec and «y?).
our symmetry requirements for the nonlinear terms. In Fig. 13, we show a comparison of the numerically ob-
The symmetry-breaking terms are the terms with the coeffiserved tip velocity for an undercooling of 0.78 and an aniso-

and

y:‘bzx*'azy‘yK

011603-7



GUERIN, DEBIERRE, AND KASSNER PHYSICAL REVIEW F1, 011603(2005

tropy strength of 0.10 with the model. In order to do thevalid here. In this approximation, there exists an implicit
comparison, the average tip position has to be subtracted otlation between the geometrical parametand the Péclet
to move the fixed point of the numerical fingerye0. number
As the figure demonstrates, a quite reasonable agreement
can be obtained, which suggests that the ingredients contrib- p=Vi(2ny), (16)
Uting to the OSCi”atory motion are indeed the ones mentioneq\/here ng is the number of fingers growing simu]taneous|y
(the competing effect of the four principal directions together[e]. This relation reads
with a destabilization of the steady tip by the driving force of
the growth, restricted by the system symmeiri¢sshould dosftan(Aa) + tar{(1 - A)a]} = p/a, (17)
also be noted that the model is quite sensitive to some of itﬁ/here
parametersb,, for example, but also andd), small changes
of which will lead to the system collapsing into a new fixed
point. This agrees well with the numerical observation that
oscillations exist only in a limited parameter range and dis-
appear again as anisotropy goes to zero. Expressing the continuity of(x) andy’(x) at x=x; and
In fact, the simulations show that if, starting from an os-X=X, allows one to obtain all the geometrical parameters but
cillating system, we increase the anisotropy, the systemdne(x;) as functions ofs. Once a value is provided fog,
moves toward a steady solution consisting of two fingersthe interface equatiop(x) is completely determined and one
This parameter change in the numerics corresponds to a rean compute the temperature field everywhere along the in-
duction of the parametees, a,, ¢, andd, which leads to the terface by using the boundary integral expression
fixed pointx=y=0 corresponding to the two-finger solution,

a= %[s(s+ 2p) ]2, (18

as soon as the sum @f and a, falls below zero. On the UX) = —A + IEOC +N2_’ exp(— ply(®) - y(x)])
other hand, a decrease of the anisotropy to zero leads back to B pn:_x A T PLY y

a steady single-finger solution in the numerics, and an in- /
crease ofc andd normally leads to a fixed point different X Ko(pV(x =X +n)?+[y(x) = y(x") ), (19
from x=y=0 in the model, which it should, because the

steady single finger is positionedxatL /4 orx=-L/4 in the additional equations are still available to complete our geo-
model. That the model is quantitative well beyond the blfur—metrical model10]. One is the Gibbs-Thomson relation ex-

cation should not be expected, but it seems to give the right , .
o pressed at the finger tip,
qualitative answers.

whereKg is the zeroth order modified Bessel function. Two

u(0) = -dy/R, (20
VI. GEOMETRICAL MODEL FOR THE FACETED and the other relates the average undercooling on the facet to
FINGERS the cusp amplitude,
At high and intermediate anisotropies, symmetric faceted 1 (R+A)/\2
fingers are selected. A close examination of the fingers ob- 6= 20OR) s dx u(x). (21
/ V

tained in the numerical simulations suggests splitting the
function y(x) that describes the interface into three sectors The algorithm implemented to solve the present geometri-

(Fig. 4. cal model is the following.
(1) Circular tip of radiusR, (a) Fix the geometrical parameter
b) Compute the Péclet numbeifrom Eqgs.(17) and(18).
Y=Yo= R+ (RE-X))™%  0=<x=x. (13 Ec; Set tEe tip radiuR to a re;sonablqutge?s. 4o
(2) Linear facet of length, (d)y Compute the temperature at the finger tifQ), from
Eq. (19) and deduce a new estimate Bffrom Eq. (20).
Y=Y (X=Xg), XS X<X. (14 Repeat this step until convergence Rn
(3) Trailing part asymptoting a vertical line, (e) Use Eq.(21) to compute the anisotropy strengh

As stated previously, the two-finger mode;=2) ob-
—Tihcod ™) x=x (15) tained at lower anisotropies is expected to fall in the weak
y= s A) T anisotropy regimg6]. This regime corresponds to a simple

. ) condition on the geometrical parameter
In the above equations, we restrict ourselves to the half

planex=0 (symmetric finger and we use the notationg mlA <s<ml(1-A). (22
=R/\2, %=(R+A) /2, yo=y(0), andy;=y(Xy). .

Sectors 1 and 2 describe the tip of the faceted ﬁngelrn the geometrical model, we have
which is similar to one of the four rounded corners present in A+R\ A . [As
the equilibrium shapgl0,13,14. In sector 3, the interface is Xp=h| —— | =—tant{ — (23
almost vertical and the anisotropy term is thus practically "
constant. The zeroth approximation of the finger shid@ig  Using our numerical values dR and A, we verify thats

(15)] proposed in Ref{6] for smooth anisotropy is thus also indeed satisfies the conditions prescribed by [28).

aw
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1 T y T T T TABLE |. Comparison of the normalized facet length, tip radius,
A A A 4 K and Péclet number between a finger and a dendrite grown with the
08} s e i same parameteksindercoolingA=0.78, anisotropyy=1.0).
[T - B A R p
o6k e P — .
o4 0.171 0.059 6.30 Dendrite
A pi 0.164 0.058 6.27 Finger
04 .
//—: channel geometry. These results clearly confirm that our one-
0.2~ ° 2.2 o a 8 | finger mode belongs to the dendritic branch of solutions.
o ToeRee
o VII. CONCLUSIONS
0 L . L . ' . . e
0.2 03 04 The main outcome of this paper about solidification in a
channel is to reveal a number of similarities as well as clear
3 differences between rough and faceted materials. For deep

. , . . enough cusps in the surface free energy, the faceted fingers
FIG. 14. Comparison of the finger features obtained in the 9€0%ither behave like free faceted dendrites or adopt a faster

e o Ao on AT 0T moce corresponding (o the confined Tge. These
number g ' wo modes are qualitatively comparable to the ones found for
P- smooth anisotropy in the surface enef6y.

Figure 14 displays the variations of the tip parameters On the other hand, for shallow cusps an oscillating mode
andR and Péclet numbgr as functions of anistropy for the IS found that, to our knowledge, has no counterpart for rough
two-finger mode. The agreement between the geometricépaterlals. This mode is obtained in a rather wide domain of
model and the numerical data is qualitatively good: the varia@nisotropies, 0.0% §<0.25, but we only consider one spe-
tions of the three parameters follow the same trends in botfific combination of the two other physical parameters, un-

cases. Quantitative agreement cannot be expected, howev%frcooling and capillary length here. A systematic study of
t

since the model developped in R¢6] is for small Péclet (he Stability domain of this mode would be desirable.
numbers while the Péclet numbers obtained in the simula- Altématively, we do not observe faceted asymmetric fin-
tions are rather large gers in the present study, and the domain of existence of this

: . ._Imode should be sought for more systematically than by vary-

e e e the geometical o s 1 el th uncerconing o, 25w do ere
. . . . . - A careful look at the oscillating mode reveals that the

anisotropies. For instance, it predicts that the veloc;lty Shou'.%ain finger is rather similar in shape to the nonfaceted asym-
increase on anisotropy increase, contrary to what is found igyetric finger obtained at zero anisotropy. Moreover, there is
the simulations(see Fig. 3. This is not surprising because discontinuity in the average vertical growth rate as aniso-
we find thats< 7r_/A for h_|gh anlsotropl_es. This corresp(_)_nds tropy tends to zergsee Fig. 3. This suggests that the oscil-
to the strong anistropy limit of Ref6], i.e., to the dendritic  |ating and the asymmetric modes are closely related. In fact,
regime. To test this point, we simulated the growth of a freepur numerical results indicate a continuous transition from
dendrite for anisotropy=1.0, using the same physical and the oscillating mode to the steady asymmetric finger as an-
phase-field parameters as in the channel. The operating stag@tropy is decreased to zero: the relative amplitude of the
parameters of the dendrite are given in Table I, together witloscillations progressively vanishes while the growth patterns
their counterparts for the one-finger mode obtained in théook more and more like the asymmetric finger.
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