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We study solidification in a two-dimensional channel for faceted materials whose facets correspond to cusps
in the g plot. The main result is the existence of three growth modes, according to the anisotropy strength: a
single faceted finger at high anisotropies, two faceted fingers in the intermediate range, and an oscillating mode
at low anisotropies. Simple geometrical and dynamical models are proposed to explain the nature of the
observed modes. In particular, the one-finger patterns are shown to be similar to free dendrites while the
two-finger patterns correspond to confined solidification fingers.
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I. INTRODUCTION

Owing to its close relationship with two canonical growth
models, viscous fingering[1] and dendritic solidification[2],
crystal growth in a channel has attracted a rather large inter-
est in the past two decades. The one-sided version of this
problem was largely studied by the Green’s function method
[3–5] and the two-sided version by analytical methods[6,7],
numerical resolution of the physical equations[8], and
phase-field calculations[9]. The geometrical and physical
parameters vary considerably from one paper to the other but
a fourfold smooth anisotropy is assumed in each case for the
surface energy,

gsud = g0f1 + e coss4udg, s1d

whereu is the angle between the normal to the interface and
the horizontalx axis, perpendicular to the channel axisy.

Analytical results obtained at low Péclet numbers show
that two branches of solutions exist for this problem[6]. The
low-velocity branch corresponds to the Saffman-Taylor solu-
tions [1], while the high-velocity branch has a different be-
havior of velocity versus undercooling and describes the so-
lidification fingers. According to the relative strength of two
physical parameters, the anisotropye and channel widthW,
two regimes are distinguished for the solidification fingers.
The geometrical parameters which gives the zeroth order
approximation of the interface equation far from the tip,y0
=s1/sdln cosspx/Dd, allows one to discriminate between the
two regimes. In the weak anisotropy regimep /D,s
,p / s1−Dd, confining effects dominate and the selected
shape is a confined finger. In the other limits,p /D, surface
energy dominates, and it crosses over smoothly to the the
W→` limit corresponding to a free dendrite.

The purpose of this work is to study the effects of faceting
on the growth modes in a channel. Indeed, there exist mate-
rials for which theg plot is not smooth and presents cusps in
certain angular directions corresponding to specific crystal-
lographic directions. At equilibrium, facets perpendicular to
these directions usually appear.

The growth of dendrites with faceted tips due to cusps
in theg plot was recently studied[10] by the thin phase-field
model [11]. The following form of anisotropy was
considered:

gsud = g0f1 + d„usinsu − u fdu + ucossu − u fdu…g. s2d

A carefully controlled smoothing of the cusps over a range
±u0 around the facet orientationsu f +np /2 sn=0,1,2,3d
proved necessary to obtain accurate numerical results, which
in turn could be extrapolated to the limitu0→0.

The present paper deals with the growth of faceted fingers
for materials belonging to this family. After a short presen-
tation of the model in Sec. II, we first test it in Sec. III for
isotropic surface energy against available results obtained by
the Green’s function method[5]. We then turn in Sec. IV to
the case of anisotropic surface energy for which three growth
modes are obtained. Two modes are similar to the ones ob-
served for smooth anisotropy and an oscillating mode is ob-
tained for low anisotropies. A dynamical description of the
latter case is proposed in Sec. V, while the former case is
analyzed in Sec. VI, within a geometrical model. In Sec. VII,
a few points are discussed and additional perspectives
opened.

II. PHASE-FIELD MODEL

In the isothermal variational formulation of the thin inter-
face phase-field model[11], the evolution equations for the
dimensionless temperatureu and phasew fields are

]tu = D¹2u +
1

2
]tw s3d

and

tsud]tw = fw − lus1 − w2dgs1 − w2d + ¹W fWsud2¹W wg

− ]xfWsudW8sud]ywg + ]yfWsudW8sud]xwg. s4d

In these equations,D is the dimensionless thermal diffusion
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coefficient andl the coupling between temperature and
phase fields. The phase field varies continuously across the
interface and far from itw=1s−1d in the solid(liquid). The
temperature fieldu=sT−TMd / sLH /Cpd, with T the tempera-
ture,TM the melting temperature,LH the latent heat, andCp
the specific heat at constant pressure.

The kinetic coefficient and capillary length are related to
the model variables through

bsud =
a1

l

tsud
WsudF1 − a2l

Wsud2

DtsudG s5d

and

d0sud =
a1

l
fWsud + W9sudg, s6d

wherea1.0.8839 anda2.0.6267[11] and tsud and Wsud
represent a relaxation time and the interface width.

In this formulation, there is a direct connection between
the interfacial energy and the interface width, so that the
most natural choice is

fsud ; Wsud/W0 = gsud/g0. s7d

Here as in[10] the kinetic coefficient is set to zero by
imposing

tsud = t0fsud2, s8d

so that

l =
1

a2

Dtsud
Wsud2 =

1

a2

Dt0

W0
2 . s9d

In a small interval ±u0 around the facet orientations, the
anisotropy function is smoothed; for instance one uses

fsud = 1 +d/sinu0 + ds1 − cotu0dcossu − u fd s10d

in the range 0øu−u f øu0 [10]. The discretization of the
model is based on a simple Euler scheme on a regular square
mesh and is described at length in Ref.[10]. We impose a
mesh sizeh/W0=0.4 and a diffusion coefficientDt0/W0

2

=1.0 throughout the paper. The domain considered is the
channel −LøxøL and −HøyøH, with L /W0=37.6 and
H /W0=100.0, 200.0, or 400.0. We only consider the facet
orientationu f =p /4 here. Other orientations are possible but
symmetry about the growth direction, i.e., they axis, is bro-
ken then. This introduces an additional degree of freedom in
the problem and, in the case of smooth anisotropy, it was
shown that the resulting competition between growth and
channel orientations gives rise to additional dynamical
modes as periodically oscillating structures[12]. The specific
choiceu0=Kd / s1+dd for the smoothing angle permits us to
use a time step that is independent ofd. In the simulations
we imposeK=p /25, so thatdt /t0=0.032; this rather large
time step brings the computation times down to practical
values.

Throughout the present paper we will systematically use
nondimensional variables, lengthsx̃=x/ s2Ld and times
t̃= t / s4L2/Dd, so that nondimensional velocitiesṼ=V
3 s2L /Dd are in fact, up to a constant factor, Péclet numbers.

In the following, the tildes will be dropped in order to sim-
plify the notation. Unless otherwise stated, the same reduced
capillary lengthd0/ s2Ld=0.005 as in Ref.[5] will be used.

III. RESULTS FOR ISOTROPIC SURFACE ENERGY

We first test our code by considering the case of isotropic
surface energy, i.e.,d=0. The initial condition is a solid fin-
ger sw=1d with the shape of a rectanglexmøxøxp and
−H /2Løyø0, topped by a half circle and with the width
expected in the stationary state,xp−xm=D (see Fig. 1). A
horizontal shift is imposedsxpÞ−xmd in order to promote the
development of asymmetric fingers whenever they are stable.
The temperature fieldu is initially set to zero inside the solid
germ and to −D outside. Reflecting conditions are imposed at
all the domain boundaries. In order to keep the tip at a
roughly constant altitude during the whole simulation length,
the phase and temperature fields are shifted downward at
regular time intervals. The area freed at the top of the domain
is then filled with pure liquidsw=−1d at temperatureu=−D.

After a transient which shortens as undercooling is in-
creased, the finger reaches a stationary state in which its tip
moves at a constant velocityV.

Tip velocity is plotted as a function of undercooling in
Fig. 2. Our data agree qualitatively well with the correspond-
ing results obtained by Kupfermanet al. [5]. The obvious
quantitative differences are not unexpected since these au-
thors studied the one-sided version of the problem, whereas
our model describes the two-sided case.

At low undercoolings,D,0.73, symmetric fingers are ob-
tained, while parity broken fingers are selected forD.0.73.
For D=0.73, an asymmetric finger arises from the off-
centered initial condition. However, using the stationary
symmetric finger obtained forD=0.72 as initial condition,
we also obtain a stable symmetric finger forD=0.73. As
expected, the asymmetric finger grows faster. The bifurcation
point lies nearDB.0.725 which is significantly higher than
the valueDB.0.665 obtained in[5].

Below some critical valueD* s0d.0.68, the initial finger
is systematically unstable and the interface evolves slowly to
a planar front.

IV. RESULTS FOR ANISOTROPIC SURFACE ENERGY

We now turn to the main purpose of this paper, which is
the growth of materials with cusps in theg plot. We set the

FIG. 1. Shape of the germ used as initial condition in the phase-
field simulations.
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undercooling to a fixed value,D=0.78, high enough for the
simulation times to be reachable.

The only free parameter is thus the anisotropy strengthd
and Fig. 3 represents the tip velocity as a function of this
parameter. We use both centered and off-centered initial con-
ditions here; as a consequence, two dynamical modes may
coexist for some values of the anistropy strengthd. Aniso-
tropy favors growth since the tip velocityVsdd for d.0 is
systematically higher thanVs0d.

A. High anisotropy: One faceted finger

For dù0.6, a single faceted finger is obtained indepen-
dently of the initial condition, as shown in Fig. 4.

An important prerequisite is to check numerical conver-
gence of the finger shape as the rounding angleu0 tends to
zero. In Fig. 5 the facet lengthL and the tip radiusR are
plotted as functions ofu0. A satisfactory linear convergence
is observed, as in the case of dendritic growth[10]. Note
that, because of the rather long times needed to perform the
numerical simulations, we do not extrapolate our data to the
limit u0→0 in the following. Based on the results obtained
here, one can expect systematic deviations of less than 20%
on L andR.

FIG. 2. Tip velocity as a function of undercooling for isotropic
surface energy(open symbols). Note the coexistence of the sym-
metric and asymmetric modes forD=0.73. The corresponding data
of Kupfermanet al.are also shown for comparison(filled symbols).

FIG. 3. Morphology diagram for anisotropic surface energy. Tip
velocity is plotted as a function of anisotropy for centered and off-
centered initial conditions. The black circle corresponds to the
asymmetric finger obtained at zero anisotropy.

FIG. 4. One faceted finger obtained for undercoolingD=0.78
and anisotropyd=1.0. Thex and y coordinates are normalized by
the total channel width.

FIG. 5. Convergence of the tip radiusR and facet lengthL with
the rounding angleu0 (anisotropyd=1.0).
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Contrary to the isotropic casesd=0d, the finger is always
symmetric in this range of anisotropy. This is not so surpris-
ing because higher surface energy anisotropy imposes higher
symmetry about they axis. This result is not due to a par-
ticular choice of undercooling, since keeping the anisotropy
fixed atd=1.0 and varyingD, we systematically obtain one
symmetric faceted finger forDù0.68. On the other hand, we
cannot totally exclude the existence of a stability domain for
asymmetric faceted fingers in thesd ,Dd plane.

Tip velocity is plotted as a function of undercooling in
Fig. 6 for an anisotropyd=1. The data follow reasonably
well the law D=D* + aV2 sa.0d valid for supercritical bi-
furcations. To check the possibility of a subcritical bifurca-
tion, we also try a fit of the formD=D* + aV2+bV4, which,
however, yields a negativeb value, essentially excluding a
subcritical bifurcation. A least-squares fit to the first law then
givesD* s1d.0.66 for the critical undercooling, to be com-
pared toD*s0d.0.68 obtained for zero anisotropy. A de-
crease of the critical undercoolingD* sdd on anisotropy in-
crease is also found for the usual cos4u anisotropy term[5].

B. Intermediate anisotropy: Pair of faceted fingers

A pair of faceted fingers is spontaneously selected when
0.20ødø0.40 for centered initial condition and when

0.30ødø0.35 for off-centered initial condition(Fig. 7).
This mode is the fastest one in the present study(see Fig. 3).

In Fig. 8, L /R is plotted as a function of the anisotopy
stengthd for the one-finger and the two-finger modes. Linear
increase is observed in both cases, and the transition, be-
tween the two modes occurs ford=0.40, whereL /R.1.
Insight into the origin of this transition is provided by the
analytical study of the smooth anisotropy case[6]. For strong
anisotropy, the finger dynamics is governed by surface en-
ergy and is thus similar to that of a free dendrite. On the
other hand, for weak anisotropy, confining effects are domi-
nant and a different shape is selected. This picture is tested
quantitatively for faceted solidification in the framework of a
geometrical model in Sec. VI.

At this point, it is rather instructive to compare the two-
finger mode(Fig. 7) with the dendritic pattern obtained in the
open space for the same parameters(Fig. 9). The latter also
displays two main parallel branches but their overall width
exceeds the channel width by far. In addition it is clearly
visible on the figure that the widths of these branches are
constantly increasing, which should cause new tip splittings
at later times(we indeed observe late tip splittings when
starting from a different germ). This dendritic pattern is thus
essentially nonstationary, contrary to the stationary two-
finger pattern obtained in the channel. The velocity of the
highest dendrite tip is represented as a function of time in
Fig. 10. It is evident from this plot that it would take an
extremely long time for the system to reach a stationary
state, if ever. We also see from this figure that the dynamics
is quite sensitive to the initial condition. In any case, the
velocity seems to adopt as an upper bound the stationary
velocity of the two-finger mode. This observation clearly
suggests that confining due to the channel walls allows the
system to select a fast stationary state that is probably not
reachable in an open geometry.

The stability of such patterns may be questioned because
periodic arrays of fingers are not observed during solidifica-
tion in an open space. This question is especially relevant
when another dynamical state is obtained for a different ini-
tial condition, like the one-finger mode atd=0.40 or the

FIG. 7. A pair of faceted fingers obtained for undercoolingD
=0.78 and anisotropyd=0.30.

FIG. 6. Tip velocity as a function of undercooling for the one-
finger mode and constant anisotropy,d=1.0. The continuous line is
a least-squares fit to a square-root law.

FIG. 8. Ratio of the facet length to the tip radius as a function of
anisotropy for the one- and two-finger modes. The straight dotted
line is a guide to the eye.
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oscillatory mode described in the next section atd=0.20 and
d=0.25. In order to check the stability of the two-finger pat-
terns, we introduce a small perturbation(a square dip) at the
tip of one of the two fingers and resume time evolution. On
the large anisotropy sidesd=0.40d, we indeed observe that
the perturbed finger is eliminated at long times and we re-
cover the one-finger mode obtained for off-centered initial
conditions. On the small anisotropy side,sd=0.20d the per-
turbation again provokes finger elimination and leads to the
final oscillatory mode obtained with an off-centered initial
condition. Both cases confirm that the two-finger mode may
be dynamically unstable. However, the two-finger pattern ob-
tained for d=0.25 does remain stable against tip perturba-
tion. Since this mode is also obtained both from centered and
off-centered initial conditions ford=0.30 andd=0.35, we
conclude that there should exist a narrow stability domain for
the two-finger mode. The stability domain probably gets nar-
rower for higher order periodic patterns(three, four, etc.,
fingers) because more total space is available then for rear-

ranging the structures. This would explain why they are not
observed in open space.

C. Low anisotropy: Oscillatory mode

For dø0.25, oscillatory states with a very stable periodT
are observed at long times, the same state being reached
from both centered and off-centered initial conditions
(Fig. 11).

To understand this mode, let us remark that growth al-
ways starts with tip splitting of the initial germ. Competition
between the two resulting fingers increases as anisotropy is
decreased because facets become shorter, so that geometrical
constraints are weaker. In this competition, one finger is ul-
timately eliminated and the survivor tries to adopt an asym-
metric shape as for zero anisotropy. On the other hand, sur-
face stiffness tends to maintain symmetry about they axis.
Competition between both effects results in a new tip split-
ting and leads to the observed oscillations. In the case of
centered initial condition, the initial tip splitting preserves
symmetry about they axis so that the double-finger mode
remains stable for high enough anisotropies(d=0.20 andd
=0.25).

The tip of the main finger is defined as the highest point
of the interface,Msx,yd, and its vertical velocity is denoted
Vy. Following the tip trajectory together with the evolution of
the whole pattern gives valuable informations about the os-
cillating mode(see Fig. 11). For off-centered initial condi-
tions, M remains on the right of the channel and slightly
oscillates around an average abscissakxl. Let us choose the
time origin as the moment whenM passes through its aver-
agex positionxs0d=kxl while moving to the right. Att=0, a
shoulder appears on the main finger, on the left side of the
tip. This shoulder is the precursor of a secondary finger
Ssx8 ,y8d, which is created after about an eighth of a period,
t.T/8, at abscissax8sT/8d.0. Note that right from the start
the secondary finger is lower than the main oney8sT/8d

FIG. 9. A dendritic pattern obtained with the same parameters as
the two fingers shown in Fig. 7.

FIG. 10. Time evolution of the velocity for the highest tip of the
dendritic pattern shown in Fig. 9(thick line). The thin line corre-
sponds to a different initial condition(solid germ). The horizontal
dashed line gives the velocity selected by the two-finger mode in
the channel geometry.
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,ysT/8d, and thaty−y8 increases steadily in time. Initially
the two fingers repel each other,M moving to the right andS
to the left. Tip splitting provokes a vertical acceleration of
M, so thatVy starts to increase at timet=T/8. At time t
.T/4, the main finger rebounds on the right channel wall
and M starts to move leftward. Meanwhile, the tip velocity
continues to increase to reach a maximum at timet
.4T/10, whenM passes again through its average position,
x=kxl. The leftward movement of the main finger stops when
it bounces on the secondary finger at timet=8T/10 andM
backtracks again. During the remaining time interval
8T/10ø tøT, the main tipM moves again to the right while
Vy continues to decrease. Finally, att=T the secondary finger
S stops growing vertically(elimination) and then rapidly
spreads sideways to reach the left channel wall. The system
is now ready for the next cycle. From this analysis, one sees
that the vertical velocityVy oscillates around an average

valueV. SinceVy increases(decreases) for about 40%(60%)
of the periodT, these oscillations are far from being sinu-
soidal. The same is true for the horizontal component of the
tip velocity Vx which oscillates around zero.

The sVx,Vyd plot displays the limit cycle corresponding to
the oscillating mode(Fig. 12). Depending on the transient,
either the rightmost or the leftmost finger may be repeatedly
eliminated. For this reason two symmetric cycles are ob-
tained for centered and off-centered initial conditions. We
obtain qualitatively similarsVx,Vyd cycles for all the low
anisotropies considered here but details in the dynamics can
be somewhat different. For instance, ford=0.20 and 0.25 the
secondary finger stops its growth on the right wall and the
left wall alternately.

V. DYNAMICAL MODEL FOR THE OSCILLATING
FINGERS

An attempt to model the cyclic motion engendered by
repeated tip splitting and elimination of one finger faces the
primary difficulty that if we choose geometric variables de-
scribing the positions of features of the fingers, the loss of a
finger also means the loss of periodicity, since the newly
created finger is not identical with the old one. For example,
we would like to choose the difference of the coordinates of
two finger tips as dynamical variables, because an interaction
between the two fingers will predominantly depend on their
distances in the two coordinate directions. But these dis-
tances become undefined as soon as one of the fingers dis-
appears and a new set of distances arises as a finger is cre-
ated. To circumvent this difficulty, we concentrate on
variables describing a single finger and use plausible as-
sumptions together with symmetry considerations to con-
struct a phenomenological model that should capture the es-
sential aspects of the interaction between fingers.

Our first assumption is that inertial effects do not play any
role in the slow finger dynamics. This means that we will not
write equations for accelerations of the finger but rather con-
sider the overdamped limit in which only velocity terms and
coordinates appear. An obvious advantage is that we will

FIG. 11. Oscillating mode obtained at undercoolingD=0.78 for
anisotropyd=0.10. The trajectory of the main finger tipM is su-
perimposed on the interface contours.

FIG. 12. sVx,Vyd plots obtained with two different initial condi-
tions for the oscillating mode displayed in Fig. 11.
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have just two first-order equations of motion for the tip po-
sition (i.e., thex andy coordinates of a finger) instead of two
second-order ones.

Next we note that there are four distinguished directions
in the system. Two are they andx directions, determined by
the walls of the channel and the direction orthogonal to them.
The other two are the directions of the facets which are ori-
ented at an angle of 45 degrees with respect to thex and y
directions. These orientations can be described by equations
of the form x+y=const andx−y=const. So our model
should be written in terms of the variablesx, y, x−y, andx
+y (which are not independent of each other, of course).

Third, we require all nonlinear terms in the model equa-
tions to respect the basic symmetry under reflectionsx→
−xd with respect to the axis of a finger(in the case of a
two-finger solutionx=0 corresponds to a coordinate that is
off center by a quarter of the channel width). We do not
require the same thing for the linear terms. These terms will
drive the bifurcation from a fixed tip position(in the frame
moving with the average tip velocity) to an oscillating tip.
One might, for example, assume that the linear terms contain
the control parameter as a common prefactor. This bifurca-
tion parameter crosses the value zero at the bifurcation point,
where the linear terms are therefore absent and the required
symmetries of the system are respected. Beyond the bifurca-
tion, the symmetry would be broken by the fact that either
the left or the right finger is the one that survives, and this
symmetry breaking is reflected by a symmetry breaking in
the linear terms of the model. On the other hand, if the bi-
furcation is of true Hopf type, i.e., if the oscillations start
with a finite frequency, then not all linear terms in the model
equations(11) and (12) given below would have vanishing
coefficients at the bifurcation point. But this would not be a
problem either, because thetotal system need not be sym-
metric with respect tox=0 but only with respect to the chan-
nel center. Only the fingers themselves and the diffusion field
in the vicinity of their tips will satisfy the discussed symme-
try (approximately). In the case of a Hopf bifurcation, one
finger would correspond to one set of parameters of the lin-
ear terms, the other to the symmetric set, as will be discussed
shortly.

If we restrict ourselves to nonlinearities up to third order,
we may then write a simplified model as follows:

ẋ = a1x + b1y − xFSx − y

c
D2

+ Sx + y

c
D2G + exy s11d

and

ẏ = − b2x + a2y − yFSx − y

d
D2

+ Sx + y

d
D2G . s12d

Further terms allowed by symmetry would be additional
terms proportional tox3 and xy2 in the first equation and
terms proportional toy2 andy3 in the second. However, we
will not invoke these terms here in order not to proliferate
parameters unnecessarily. That the prefactors of thex−y and
x+y terms are the same in each equation is a consequence of
our symmetry requirements for the nonlinear terms.
The symmetry-breaking terms are the terms with the coeffi-

cientsb1 andb2. For each solution of this phenomenological
model there is a symmetric partner obtained after replacing
b1→−b1 andb2→−b2, corresponding to the other finger be-
ing the survivor of the competition.

The linearized problem arising from Eqs.(11) and (12)
has the eigenvalues

l1/2 =
1

2
sa1 + a2d ±Î1

4
sa1 − a2d2 − b1b2.

Negative values ofa1 anda2 (or a negative sum) produce a
fixed point x=y=0, and we expect the model to describe
oscillating tips for a range of positive values of all param-
eters.

A physical interpretation of the terms in this model is as
follows. The parametersa1 anda2 trigger the oscillatory in-
stability, so they must increase with decreasing anisotropy.
Whetherb1 or b2 is roughly constant at the bifurcation or
crosses zero depends on whether the bifurcation is a Hopf
bifurcation or not, i.e., on whether the oscillations start at a
finite frequency or at zero frequency. Our data support the
first possibility. The terms containingx−y andx+y describe
the influence of the facets. They contain length scalesc and
d which must be formed from the length scales of the physi-
cal problem, that is, the diffusion length, the capillary length,
and the length of the facets. Since these terms should vanish
in the absence of facets,c andd must increase with decreas-
ing facet length. An inverse proportionality would therefore
be a possible relationship.c andd need not be equal, since
the x and y directions are not equivalent. The term propor-
tional to xy is present, because growth in thex andy direc-
tions is coupled even in the absence of facets, and this is the
simplest term describing such a coupling. Note, however,
that in the absence of anisotropy and, hence, facets, the
model as it stands cannot describe instability of a steady
finger. We would then have to take into account at least the
cubic terms that were neglected above(~x3 and~y3).

In Fig. 13, we show a comparison of the numerically ob-
served tip velocity for an undercooling of 0.78 and an aniso-

FIG. 13. Comparison of the numerically determined tip velocity
with that obtained from the model equations(11) and (12), with
parameter valuesa1=0.6, a2=0.45, b1=0.245,b2=0.8, c=6.35, d
=3.84, ande=0.04. The parameters were fitted by eye.
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tropy strength of 0.10 with the model. In order to do the
comparison, the average tip position has to be subtracted out
to move the fixed point of the numerical finger toy=0.

As the figure demonstrates, a quite reasonable agreement
can be obtained, which suggests that the ingredients contrib-
uting to the oscillatory motion are indeed the ones mentioned
(the competing effect of the four principal directions together
with a destabilization of the steady tip by the driving force of
the growth, restricted by the system symmetries). It should
also be noted that the model is quite sensitive to some of its
parameters(b1, for example, but alsoc andd), small changes
of which will lead to the system collapsing into a new fixed
point. This agrees well with the numerical observation that
oscillations exist only in a limited parameter range and dis-
appear again as anisotropy goes to zero.

In fact, the simulations show that if, starting from an os-
cillating system, we increase the anisotropy, the system
moves toward a steady solution consisting of two fingers.
This parameter change in the numerics corresponds to a re-
duction of the parametersa1, a2, c, andd, which leads to the
fixed pointx=y=0 corresponding to the two-finger solution,
as soon as the sum ofa1 and a2 falls below zero. On the
other hand, a decrease of the anisotropy to zero leads back to
a steady single-finger solution in the numerics, and an in-
crease ofc and d normally leads to a fixed point different
from x=y=0 in the model, which it should, because the
steady single finger is positioned atx=L /4 or x=−L /4 in the
model. That the model is quantitative well beyond the bifur-
cation should not be expected, but it seems to give the right
qualitative answers.

VI. GEOMETRICAL MODEL FOR THE FACETED
FINGERS

At high and intermediate anisotropies, symmetric faceted
fingers are selected. A close examination of the fingers ob-
tained in the numerical simulations suggests splitting the
function ysxd that describes the interface into three sectors
(Fig. 4).

(1) Circular tip of radiusR,

y = y0 − R+ sR2 − x2d1/2, 0 ø x ø x1. s13d

(2) Linear facet of lengthL,

y = y1 − sx − x1d, x1 ø x ø x2. s14d

(3) Trailing part asymptoting a vertical line,

y =
1

s
ln cosSpx

D
D, x ù x2. s15d

In the above equations, we restrict ourselves to the half
planexù0 (symmetric finger) and we use the notationsx1
=R/Î2, x2=sR+Ld /Î2, y0=ys0d, andy1=ysx1d.

Sectors 1 and 2 describe the tip of the faceted finger
which is similar to one of the four rounded corners present in
the equilibrium shape[10,13,14]. In sector 3, the interface is
almost vertical and the anisotropy term is thus practically
constant. The zeroth approximation of the finger shape[Eq.
(15)] proposed in Ref.[6] for smooth anisotropy is thus also

valid here. In this approximation, there exists an implicit
relation between the geometrical parameters and the Péclet
number

p = V/s2nfd, s16d

where nf is the number of fingers growing simultaneously
[6]. This relation reads

d0shtansDad + tanfs1 − Ddagj = p/a, s17d

where

a =
1

2
fsss+ 2pdg1/2. s18d

Expressing the continuity ofysxd and y8sxd at x=x1 and
x=x2 allows one to obtain all the geometrical parameters but
one sx1d as functions ofs. Once a value is provided forx1,
the interface equationysxd is completely determined and one
can compute the temperature field everywhere along the in-
terface by using the boundary integral expression

usxd = − D + p o
n=−`

n=+` E
−D/2

+D/2 dx8

p
exps− pfysxd − ysx8dgd

3 K0„pÎsx − x8 + nd2 + fysxd − ysx8dg2
…, s19d

whereK0 is the zeroth order modified Bessel function. Two
additional equations are still available to complete our geo-
metrical model[10]. One is the Gibbs-Thomson relation ex-
pressed at the finger tip,

us0d = − d0/R, s20d

and the other relates the average undercooling on the facet to
the cusp amplitude,

d =
1

Î2us0dR
E

R/Î2

sR+Ld/Î2

dx usxd. s21d

The algorithm implemented to solve the present geometri-
cal model is the following.

(a) Fix the geometrical parameters.
(b) Compute the Péclet numberp from Eqs.(17) and(18).
(c) Set the tip radiusR to a reasonable guess.
(d) Compute the temperature at the finger tip,us0d, from

Eq. (19) and deduce a new estimate ofR from Eq. (20).
Repeat this step until convergence onR.

(e) Use Eq.(21) to compute the anisotropy strengthd.
As stated previously, the two-finger modesnf =2d ob-

tained at lower anisotropies is expected to fall in the weak
anisotropy regime[6]. This regime corresponds to a simple
condition on the geometrical parameters,

p/D , s, p/s1 − Dd. s22d

In the geometrical model, we have

x2 = nfSL + R
Î2

D =
D

p
tan−1SDs

p
D . s23d

Using our numerical values ofR and L, we verify that s
indeed satisfies the conditions prescribed by Eq.(22).
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Figure 14 displays the variations of the tip parametersL
andR and Péclet numberp as functions of anistropyd for the
two-finger mode. The agreement between the geometrical
model and the numerical data is qualitatively good: the varia-
tions of the three parameters follow the same trends in both
cases. Quantitative agreement cannot be expected, however,
since the model developped in Ref.[6] is for small Péclet
numbers while the Péclet numbers obtained in the simula-
tions are rather large.

On the other hand, the geometrical model fails to predict
the results obtained for the one-finger mode, at higher
anisotropies. For instance, it predicts that the velocity should
increase on anisotropy increase, contrary to what is found in
the simulations(see Fig. 3). This is not surprising because
we find thats,p /D for high anisotropies. This corresponds
to the strong anistropy limit of Ref.[6], i.e., to the dendritic
regime. To test this point, we simulated the growth of a free
dendrite for anisotropyd=1.0, using the same physical and
phase-field parameters as in the channel. The operating state
parameters of the dendrite are given in Table I, together with
their counterparts for the one-finger mode obtained in the

channel geometry. These results clearly confirm that our one-
finger mode belongs to the dendritic branch of solutions.

VII. CONCLUSIONS

The main outcome of this paper about solidification in a
channel is to reveal a number of similarities as well as clear
differences between rough and faceted materials. For deep
enough cusps in the surface free energy, the faceted fingers
either behave like free faceted dendrites or adopt a faster
growth mode corresponding to the confined finger. These
two modes are qualitatively comparable to the ones found for
smooth anisotropy in the surface energy[6].

On the other hand, for shallow cusps an oscillating mode
is found that, to our knowledge, has no counterpart for rough
materials. This mode is obtained in a rather wide domain of
anisotropies, 0.01ødø0.25, but we only consider one spe-
cific combination of the two other physical parameters, un-
dercooling and capillary length here. A systematic study of
the stability domain of this mode would be desirable.

Alternatively, we do not observe faceted asymmetric fin-
gers in the present study, and the domain of existence of this
mode should be sought for more systematically than by vary-
ing the undercooling alone, as we do here.

A careful look at the oscillating mode reveals that the
main finger is rather similar in shape to the nonfaceted asym-
metric finger obtained at zero anisotropy. Moreover, there is
no discontinuity in the average vertical growth rate as aniso-
tropy tends to zero(see Fig. 3). This suggests that the oscil-
lating and the asymmetric modes are closely related. In fact,
our numerical results indicate a continuous transition from
the oscillating mode to the steady asymmetric finger as an-
isotropy is decreased to zero: the relative amplitude of the
oscillations progressively vanishes while the growth patterns
look more and more like the asymmetric finger.
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FIG. 14. Comparison of the finger features obtained in the geo-
metrical model(lines) and in the numerical simulations(symbols)
for the two-finger mode. Note the two different scales for the Péclet
numberp.

TABLE I. Comparison of the normalized facet length, tip radius,
and Péclet number between a finger and a dendrite grown with the
same parameters(undercoolingD=0.78, anisotropyd=1.0).

L R p

0.171 0.059 6.30 Dendrite

0.164 0.058 6.27 Finger
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